Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Oncol ; 14: 1361152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515566

RESUMO

Background: Prostate cancer (PCa) is the second most common solid cancer among men worldwide and the fifth leading cause of cancer-related deaths in men. Sulforaphane (SFN), an isothiocyanate compound, has been shown to exert inhibitory effects on a variety of cancers. However, the biological function of SFN in PCa has not been fully elucidated. The objective of this study was conducted to further investigate the possible underlying mechanism of SFN in PCa using in vitro cell culture and in vivo tumor model experiments. Methods: Cell viability, migration, invasion, and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8), wound healing assay, transwell assay, or flow cytometry. Expression of microRNA (miR)-3919 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) or in situ hybridization assay. Xenograft assay was conducted to validated the antitumor effect of miR-3919. The targeting relationship between miR-3919 and DJ-1 was verified by dual-luciferase reporter assay. The level of DJ-1was measured by qRT-PCR or western blotting (WB). Results: In the present study, SFN downregulated mRNA and protein expression of DJ-1, an oncogenic gene. Small RNA sequencing analysis and dual-luciferase reporter assay confirmed that microRNA (miR)-3919 directly targeted DJ-1 to inhibition its expression. Furthermore, miR-3919 overexpression impeded viability, migration, and invasion and promoted apoptosis of PCa cells. Tumor growth in nude mice was also inhibited by miR-3919 overexpression, and miR-3919 expression in PCa tissues was lower than that in peritumoral tissues in an in situ hybridization assay. Transfection with miR-3919 inhibitors partially reversed the effects of SFN on cell viability, migration, invasion, and apoptosis. Conclusion: Overall, the miR-3919/DJ-1 axis may be involved in the effects of SFN on the malignant biological behavior of PCa cells, which might be a new therapeutic target in PCa.

2.
Fish Shellfish Immunol ; 148: 109505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521144

RESUMO

The E11 cell line, derived from striped snakehead fish (Channa striata), possesses a distinctive feature: it is persistently infected with a C-type retrovirus. Notably, it exhibits high permissiveness to piscine nodavirus and the emerging tilapia lake virus (TiLV). Despite its popularity in TiLV research, the absence of genome assembly for the E11 cell line and Channa striata has constrained research on host-virus interactions. This study aimed to fill this gap by sequencing, assembling, and annotating the E11 cell line genome. Our efforts yielded a 600.5 Mb genome including 24 chromosomes with a BUSCO score of 98.8%. In addition, the complete proviral DNA sequence of snakehead retrovirus (SnRV) was identified in the E11 cell genome. Comparative genomic analysis between the E11 cell line and another snakehead species Channa argus revealed the loss of many immune-related gene families in the E11 cell genome, indicating a compromised immune response. We also conducted transcriptome analysis of mock- and TiLV-infected E11 cells, unveiling new perspectives on virus-virus and host-virus interactions. The TiLV infection suppressed the high expression of SnRV in E11 cells, and activated some other endogenous retroviruses. The protein-coding gene comparison revealed a pronounced up-regulation of genes involved in immune response, alongside a down-regulation of genes associated with specific metabolic processes. In summary, the genome assembly and annotation of the E11 cell line provide valuable resources to understand the SnRV and facilitate further studies on nodavirus and TiLV. The RNA-seq profiles shed light on the cellular mechanisms employed by fish cells in response to viral challenges, potentially guiding the development of therapeutic strategies against TiLV in aquaculture. This study also provides the first insights into the viral transcriptome profiles of endogenous SnRV and evading TiLV, enhancing our understanding of host-virus interactions in fish.


Assuntos
Doenças dos Peixes , Tilápia , Vírus , Animais , Retroviridae , Cromossomos , Perfilação da Expressão Gênica/veterinária
3.
Sci Total Environ ; 926: 171924, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522537

RESUMO

This study employs a comprehensive approach combining metagenomic analysis and bacterial isolation to elucidate the microbial composition, antibiotic resistance genes (ARGs), and virulence factors (VFGs) present in shrimps from market and supermarket. Metagenomic analysis of shrimps revealed a dominance of Proteobacteria and Bacteroidetes with Firmicutes notably enriched in some samples. On the other hand, the dominant bacteria isolated included Citrobacter portucalensis, Escherichia coli, Salmonella enterica, Vibrio species and Klebsiella pneumonaie. Metagenomic analysis unveiled a diverse spectrum of 23 main types and 380 subtypes of ARGs in shrimp samples including many clinical significant ARGs such as blaKPC, blaNDM, mcr, tet(X4) etc. Genomic analysis of isolated bacterial strains identified 14 ARG types with 109 subtype genes, which complemented the metagenomic data. Genomic analysis also allowed us to identify a rich amount of MDR plasmids, which provided further insights into the dissemination of resistance genes in different species of bacteria in the same samples. Examination of VFGs and mobile genetic elements (MGEs) in both metagenomic and bacterial genomes revealed a complex landscape of factors contributing to bacterial virulence and genetic mobility. Potential co-occurrence patterns of ARGs and VFGs within human pathogenic bacteria underlined the intricate interplay between antibiotic resistance and virulence. In conclusion, this integrated analysis for the first time provides a comprehensive view and sheds new light on the potential hazards associated with shrimp products in the markets. The findings underscore the necessity of ongoing surveillance and intervention strategies to mitigate risks posed by antibiotic-resistant bacteria in the food supply chain using the novel comprehensive approaches.


Assuntos
Decápodes , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , Bactérias/genética , Plasmídeos , Resistência Microbiana a Medicamentos/genética , Crustáceos
4.
Microbiol Res ; 283: 127666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460283

RESUMO

The escalating prevalence of multidrug-resistant (MDR) bacteria pose a significant public health threat. Understanding the genomic features and deciphering the antibiotic resistance profiles of these pathogens is crucial for development of effective surveillance and treatment strategies. In this study, we employed the R10.4.1 nanopore sequencing technology, specifically through the use of the MinION platform, to analyze eight MDR bacterial strains originating from clinical, ecological and food sources. A single 72-hour sequencing run could yield approximately 12 million reads which covered a total of 34 gigabases (Gbp). The nanopore R10.4.1 data was processed using the Flye assembler, successfully assembling the genomes of eight bacterial strains and their 18 plasmids. Notably, the assemblies generated solely from R10.4.1 nanopore data closely matched those from next-generation sequencing data. Diverse antibiotic resistance patterns and specific resistance genes in the test strains were identified. Hospital strains that exhibited multidrug resistance were found to harbor various resistance genes that encode efflux pumps and extended-spectrum ß-lactamases. Environmental and food sources were found to display resistance profiles in a species-specific manner. The composition of structurally complex plasmids in the test strains could also be revealed by analysis of nanopore long reads, which also suggested evidence of horizontal transfer of plasmids between different bacterial species. These findings provide valuable insights into the genetic characteristics of MDR bacteria and demonstrating the practicality of nanopore sequencing technology for detecting of resistance elements in bacterial pathogens.


Assuntos
Sequenciamento por Nanoporos , Plasmídeos/genética , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Bactérias/genética , Antibacterianos/farmacologia
5.
mSystems ; 9(2): e0116323, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294229

RESUMO

Modifications on viral RNAs (vRNAs), either genomic RNAs or RNA transcripts, have complex effects on the viral life cycle and cellular responses to viral infection. The advent of Oxford Nanopore Technologies Direct RNA Sequencing provides a new strategy for studying RNA modifications. To this end, multiple computational tools have been developed, but a systemic evaluation of their performance in mapping vRNA modifications is lacking. Here, 10 computational tools were tested using the Sindbis virus (SINV) RNAs isolated from infected mammalian (BHK-21) or mosquito (C6/36) cells, with in vitro-transcribed RNAs serving as modification-free control. Three single-mode approaches were shown to be inapplicable in the viral context, and three out of seven comparative methods required cutoff adjustments to reduce false-positive predictions. Utilizing optimized cutoffs, an integrated analysis of comparative tools suggested that the intersected predictions of Tombo_com and xPore were significantly enriched compared with the background. Consequently, a pipeline integrating Tombo_com and xPore was proposed for vRNA modification detection; the performance of which was supported by N6-methyladenosine prediction in severe acute respiratory syndrome coronavirus 2 RNAs using publicly available data. When applied to SINV RNAs, this pipeline revealed more intensive modifications in subgenomic RNAs than in genomic RNAs. Modified uridines were frequently identified, exhibiting substantive overlapping between vRNAs generated in different cell lines. On the other hand, the interpretation of other modifications remained unclear, underlining the limitations of the current computational tools despite their notable potential.IMPORTANCEComputational approaches utilizing Oxford Nanopore Technologies Direct RNA Sequencing data were almost exclusively designed to map eukaryotic epitranscriptomes. Therefore, extra caution must be exercised when using these tools to detect vRNA modifications, as in most cases, vRNA modification profiles should be regarded as unknown epitranscriptomes without prior knowledge. Here, we comprehensively evaluated the performance of 10 computational tools in detecting vRNA modification sites. All tested single-mode methods failed to differentiate native and in vitro-transcribed samples. Using optimized cutoff values, seven tested comparative tools generated very different predictions. An integrated analysis showed significant enrichment of Tombo_com and xPore predictions against the background. A pipeline for vRNA modification detection was proposed accordingly and applied to Sindbis virus RNAs. In conclusion, our study underscores the need for the careful application of computational tools to analyze viral epitranscriptomics. It also offers insights into alphaviral RNA modifications, although further validation is required.


Assuntos
Nanoporos , Vírus Sindbis , Animais , Vírus Sindbis/genética , RNA Viral/genética , Linhagem Celular , Análise de Sequência de RNA , Mamíferos/genética
6.
Sci Data ; 10(1): 532, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563176

RESUMO

Zebrafish is a widely used model organism for investigating human diseases, including hematopoietic disorders. However, a comprehensive methylation baseline for zebrafish primary hematopoietic organ, the kidney marrow (KM), is still lacking. We employed Oxford Nanopore Technologies (ONT) sequencing to profile DNA methylation in zebrafish KM by generating four KM datasets, with two groups based on the presence or absence of red blood cells. Our findings revealed that blood contamination in the KM samples reduced read quality and altered methylation patterns. Compared with whole-genome bisulfite sequencing (WGBS), the ONT-based methylation profiling can cover more CpG sites (92.4% vs 70%-80%), and exhibit less GC bias with more even genomic coverage. And the ONT methylation calling results showed a high correlation with WGBS results when using shared sites. This study establishes a comprehensive methylation profile for zebrafish KM, paving the way for further investigations into epigenetic regulation and the development of targeted therapies for hematopoietic disorders.


Assuntos
Metilação de DNA , Hematopoese , Peixe-Zebra , Animais , Ilhas de CpG , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos , Análise de Sequência de DNA/métodos , Peixe-Zebra/genética , Hematopoese/genética
7.
J Neuroimmunol ; 381: 578134, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364516

RESUMO

Multiple Sclerosis (MS) is a chronic autoimmune-mediated demyelinating disease of the central nervous system (CNS) that might be triggered by aberrant epigenetic changes in the genome. DNA methylation is the most studied epigenetic mechanism that participates in MS pathogenesis. However, the overall methylation level in the CNS of MS patients remains elusive. We used direct long-read nanopore DNA sequencing and characterized the differentially methylated genes in the brain from mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We identified 163 hypomethylated promoters and 327 hypermethylated promoters. These genomic alterations were linked to various biological processes including metabolism, immune responses, neural activities, and mitochondrial dynamics, all of which are vital for EAE development. Our results indicate a great potential of nanopore sequencing in identifying genomic DNA methylation in EAE and provide important guidance for future studies investigating the MS/EAE pathology.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Sequenciamento por Nanoporos , Humanos , Camundongos , Animais , Sistema Nervoso Central/patologia , Camundongos Endogâmicos C57BL
8.
Comput Struct Biotechnol J ; 21: 2352-2364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025654

RESUMO

Third-generation sequencing can be used in human cancer genomics and epigenomic research. Oxford Nanopore Technologies (ONT) recently released R10.4 flow cell, which claimed an improved read accuracy compared to R9.4.1 flow cell. To evaluate the benefits and defects of R10.4 flow cell for cancer cell profiling on MinION devices, we used the human non-small-cell lung-carcinoma cell line HCC78 to construct libraries for both single-cell whole-genome amplification (scWGA) and whole-genome shotgun sequencing. The R10.4 and R9.4.1 reads were benchmarked in terms of read accuracy, variant detection, modification calling, genome recovery rate and compared with the next generation sequencing (NGS) reads. The results highlighted that the R10.4 outperforms R9.4.1 reads, achieving a higher modal read accuracy of over 99.1%, superior variation detection, lower false-discovery rate (FDR) in methylation calling, and comparable genome recovery rate. To achieve high yields scWGA sequencing in the ONT platform as NGS, we recommended multiple displacement amplification with a modified T7 endonuclease Ⅰ cutting procedure as a promising method. In addition, we provided a possible solution to filter the likely false positive sites among the whole genome region with R10.4 by using scWGA sequencing result as a negative control. Our study is the first benchmark of whole genome single-cell sequencing using ONT R10.4 and R9.4.1 MinION flow cells by clarifying the capacity of genomic and epigenomic profiling within a single flow cell. A promising method for scWGA sequencing together with the methylation calling results can benefit researchers who work on cancer cell genomic and epigenomic profiling using third-generation sequencing.

9.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067484

RESUMO

MOTIVATION: Primer design is a routine practice for modern molecular biology labs. Bioinformatics tools like primer3 and primer-blast have standardized the primer design for a specific region. However, large-scale primer design, especially for genome-wide screening, is still a labor-intensive job for most wet-lab researchers using these pipelines. RESULTS: Here, we present the primerdiffer pipeline, which can be used to batch design primers that differentiate haplotypes on a large scale with precise false priming checking. This command-line interface (CLI) pipeline includes greedy primer search, local and global in silico PCR-based false priming checking, and automated best primer selection. The local CLI application provides flexibility to design primers with the user's own genome sequences and specific parameters. Some species-specific primers designed to genotype the hybrid introgression strains from Caenorhabditis briggsae and Caenorhabditis nigoni have been validated using single-worm PCR. This pipeline provides the first CLI-based large-scale primer design tool to differentiate haplotypes in any targeted region. AVAILABILITY AND IMPLEMENTATION: The open-source python modules are available at github (https://github.com/runsheng/primerdiffer, https://github.com/runsheng/primervcf) and Python package index (https://pypi.org/project/primerdiffer/, https://pypi.org/project/primervcf/).


Assuntos
Biologia Computacional , Software , Haplótipos , Genótipo , Reação em Cadeia da Polimerase
11.
Oncogene ; 42(16): 1272-1281, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739363

RESUMO

Isocitrate dehydrogenase 2 (IDH2) mutations occur in more than 15% of cytogenetically normal acute myeloid leukemia (CN-AML) but comparative studies of their roles in leukemogenesis have been scarce. We generated zebrafish models of IDH2R172K and IDH2R140Q AML and reported their pathologic, functional and transcriptomic features and therapeutic responses to target therapies. Transgenic embryos co-expressing FLT3ITD and IDH2 mutations showed accentuation of myelopoiesis. As these embryos were raised to adulthood, full-blown leukemia ensued with multi-lineage dysplasia, increase in myeloblasts and marrow cellularity and splenomegaly. The leukemia cells were transplantable into primary and secondary recipients and resulted in more aggressive disease. Tg(Runx1:FLT3ITDIDH2R172K) but not Tg(Runx1:FLT3ITDIDH2R140Q) zebrafish showed an increase in T-cell development at embryonic and adult stages. Single-cell transcriptomic analysis revealed increased myeloid skewing, differentiation blockade and enrichment of leukemia-associated gene signatures in both zebrafish models. Tg(Runx1:FLT3ITDIDH2R172K) but not Tg(Runx1:FLT3ITDIDH2R140Q) zebrafish showed an increase in interferon signals at the adult stage. Leukemic phenotypes in both zebrafish could be ameliorated by quizartinib and enasidenib. In conclusion, the zebrafish models of IDH2 mutated AML recapitulated the morphologic, clinical, functional and transcriptomic characteristics of human diseases, and provided the prototype for developing zebrafish leukemia models of other genotypes that would become a platform for high throughput drug screening.


Assuntos
Leucemia Mieloide Aguda , Peixe-Zebra , Adulto , Animais , Humanos , Peixe-Zebra/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Nucleofosmina , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Genótipo , Mutação , Animais Geneticamente Modificados , Isocitrato Desidrogenase/genética , Tirosina Quinase 3 Semelhante a fms/genética
12.
Microbiol Spectr ; 11(1): e0361322, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511715

RESUMO

Most alphaviruses are transmitted by mosquito vectors and infect a wide range of vertebrate hosts, with a few exceptions. Eilat virus (EILV) in this genus is characterized by a host range restricted to mosquitoes. Its chimeric viruses have been developed as safe and effective vaccine candidates and diagnostic tools. Here, we investigated the interactions between these insect-specific viruses (ISVs) and mosquito cells, unveiling their potential roles in determining vector competence and arbovirus transmission. By RNA sequencing, we found that these ISVs profoundly modified host cell gene expression profiles. Two EILV-based chimeras, consisting of EILV's nonstructural genes and the structural genes of Chikungunya virus (CHIKV) or Venezuelan equine encephalitis virus (VEEV), namely, EILV/CHIKV (E/C) and EILV/VEEV (E/V), induced more intensive transcriptome regulation than parental EILV and activated different antiviral mechanisms in host cells. We demonstrated that E/C robustly promoted antimicrobial peptide production and E/V strongly upregulated the RNA interference pathway components. This also highlighted the intrinsic divergences between CHIKV and VEEV, representatives of the Old World and New World alphaviruses. In contrast, EILV triggered a limited antiviral response. We further showed that initial chimera infections efficiently inhibited subsequent pathogenic alphavirus replication, especially in the case of E/V infection, which almost prevented VEEV and Sindbis virus (SINV) superinfections. Altogether our study provided valuable information on developing ISVs as biological control agents. IMPORTANCE Mosquito-borne alphaviruses can cause emerging and reemerging infectious diseases, posing a considerable threat to human and animal health worldwide. However, no specific antivirals or commercial vaccines are currently available. Therefore, it is vital to develop biological control measures to contain virus transmission. Insect-specific EILV and its chimeras are supposed to induce superinfection exclusion owing to the close phylogenetical relationship with pathogenic alphaviruses. These viruses might also, like bacterial symbionts, modulate mosquito hosts' vector competence for arboviruses. However, little is known about the responses of mosquitoes or mosquito cells to ISV infections. Here, we found that EILV barely elicited antiviral defenses in host cells, while its chimeras, namely, E/C and E/V, potentiated the responses via different mechanisms. Furthermore, we showed that initial chimera infections could largely inhibit subsequent pathogenic alphavirus infections. Taken together, our study proposed insect-specific chimeras as a promising candidate for developing biological control measures against pathogenic alphaviruses.


Assuntos
Infecções por Alphavirus , Alphavirus , Culicidae , Vírus de Insetos , Animais , Alphavirus/genética , Infecções por Alphavirus/prevenção & controle
13.
Front Cell Dev Biol ; 10: 978962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393848

RESUMO

Early embryonic cell cycles usually alternate between S and M phases without any gap phase. When the gap phases are developmentally introduced in various cell types remains poorly defined especially during embryogenesis. To establish the cell-specific introduction of gap phases in embryo, we generate multiple fluorescence ubiquitin cell cycle indicators (FUCCI) in C. elegans. Time-lapse 3D imaging followed by lineal expression profiling reveals sharp and differential accumulation of the FUCCI reporters, allowing the systematic demarcation of cell cycle phases throughout embryogenesis. Accumulation of the reporters reliably identifies both G1 and G2 phases only in two embryonic cells with an extended cell cycle length, suggesting that the remaining cells divide either without a G1 phase, or with a brief G1 phase that is too short to be picked up by our reporters. In summary, we provide an initial picture of gap phase introduction in a metazoan embryo. The newly developed FUCCI reporters pave the way for further characterization of developmental control of cell cycle progression.

14.
Dis Markers ; 2022: 3379883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393970

RESUMO

Background: Ferroptosis, a type of cell death caused by phospholipid peroxidation, has lately been linked to the onset and development of numerous illnesses. Numerous investigations have demonstrated the close relationship between lipid peroxidation and carotid atherosclerosis. In order to get new knowledge for targeted therapy, bioinformatics analysis was employed in this study to discover the probable ferroptosis-related genes of carotid atherosclerosis. Methods: The GSE43292 gene expression dataset was downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed ferroptosis-related genes were screened by R software and then analyzed by protein-protein interaction (PPI) network, differential gene correlation analysis, Kyoto Encyclopedia of Gene and Genome (KEGG) pathway, and Gene Ontology (GO) terminology enrichment analysis to explore the functional role. Result: In samples of atherosclerosis, we found 33 ferroptosis genes that were differentially expressed, including 21 upregulated genes and 12 downregulated genes. These differentially elevated genes were mainly connected to the ferroptosis and glutathione metabolism pathways, according to GO and KEGG enrichment analysis. We also discovered 10 hub genes and 2 important modules through the analysis of the PPI network and the creation of key modules. Conclusion: The current findings imply that the carotid atherosclerosis phenomenon involves ferroptosis, and 10 important genes associated to ferroptosis may play a role in the development of carotid atherosclerosis. This study offered a novel approach to future research on the carotid atherosclerosis pathogenic processes and treatment targets.


Assuntos
Doenças das Artérias Carótidas , Ferroptose , Humanos , Biologia Computacional , Redes Reguladoras de Genes , Ferroptose/genética , Perfilação da Expressão Gênica , Doenças das Artérias Carótidas/genética
15.
Ecotoxicol Environ Saf ; 246: 114163, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36240522

RESUMO

BACKGROUND: Flurochloridone (FLC), a selective herbicide used on a global scale, has been reported to have male reproductive toxicity whose evidence is limited, but its mechanism remains unclear. The present study was conducted to systematically explore the male reproductive toxicity of FLC, including sperm quality, spermatogenesis, toxicity targets, and potential mechanisms. METHODS: Male C57BL/6 mice aged 6-7 weeks received gavage administration of FLC (365/730 mg/kg/day) for 28 consecutive days. Then, the tissue and sperm of mice were collected for analysis. We measured the gonadosomatic index and analyzed sperm concentration, motility, malformation rate, and mitochondrial membrane potential (MMP). Spermatocyte immunofluorescence staining was performed to analyze meiosis. We also performed pathological staining on the testis and epididymis tissue and TUNEL staining, immunohistochemical analysis, and ultrastructural observation on the testicular tissue. RESULTS: Results showed that FLC caused testicular weight reduction, dysfunction, and architectural damage in mice, but no significant adverse effect was found in the epididymis. The exposure interfered with spermatogonial proliferation and meiosis, affecting sperm concentration, motility, kinematic parameters, morphology, and MMP, decreasing sperm quality. Furthermore, mitochondrial damage and apoptosis of testicular Sertoli cells were observed in mice treated with FLC. CONCLUSION: We found that FLC has significant adverse effects on spermatogonial proliferation and meiosis. Meanwhile, apoptosis and mitochondrial damage may be the potential mechanism of Sertoli cell damage. Our study demonstrated that FLC could induce testicular Sertoli cell damage, leading to abnormal spermatogenesis, which decreased sperm quality. The data provided references for the toxicity risk and research methods of FLC application in the environment.


Assuntos
Infertilidade Masculina , Células de Sertoli , Humanos , Masculino , Camundongos , Animais , Testículo , Camundongos Endogâmicos C57BL , Sêmen , Espermatogênese , Infertilidade Masculina/patologia , Espermatozoides
16.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171682

RESUMO

Caenorhabditis briggsae as a companion species for Caenorhabditis elegans has played an increasingly important role in study of evolution of development and genome and gene regulation. Aided by the isolation of its sister spices, it has recently been established as a model for speciation study. To take full advantage of the species for comparative study, an effective transgenesis method especially those with single-copy insertion is important for functional comparison. Here, we improved a transposon-based transgenesis methodology that had been originally developed in C. elegans but worked marginally in C. briggsae. By incorporation of a heat shock step, the transgenesis efficiency in C. briggsae with a single-copy insertion is comparable to that in C. elegans. We used the method to generate 54 independent insertions mostly consisting of a mCherry tag over the C. briggsae genome. We demonstrated the use of the tags in identifying interacting loci responsible for hybrid male sterility between C. briggsae and Caenorhabditis nigoni when combined with the GFP tags we generated previously. Finally, we demonstrated that C. briggsae tolerates the C. elegans toxin, PEEL-1, but not SUP-35, making the latter a potential negative selection marker against extrachromosomal array.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis , Toxinas Biológicas , Animais , Masculino , Caenorhabditis/genética , Caenorhabditis elegans/genética , Genoma , Técnicas de Transferência de Genes , Proteínas de Caenorhabditis elegans/genética
17.
Front Microbiol ; 13: 801587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633679

RESUMO

Metagenome assembly is a core yet methodologically challenging step for taxonomic classification and functional annotation of a microbiome. This study aims to generate the high-resolution human gut metagenome using both Illumina and Nanopore platforms. Assembly was achieved using four assemblers, including Flye (Nanopore), metaSPAdes (Illumina), hybridSPAdes (Illumina and Nanopore), and OPERA-MS (Illumina and Nanopore). Hybrid metagenome assembly was shown to generate contigs with almost same sizes comparable to those produced using Illumina reads alone, but was more contiguous, informative, and longer compared with those assembled with Illumina reads only. In addition, hybrid metagenome assembly enables us to obtain complete plasmid sequences and much more AMR gene-encoding contigs than the Illumina method. Most importantly, using our workflow, 58 novel high-quality metagenome bins were obtained from four assembly algorithms, particularly hybrid assembly (47/58), although metaSPAdes could provide 11 high-quality bins independently. Among them, 29 bins were currently uncultured bacterial metagenome-assembled genomes. These findings were highly consistent and supported by mock community data tested. In the analysis of biosynthetic gene clusters (BGCs), the number of BGCs in the contigs from hybridSPAdes (241) is higher than that of contigs from metaSPAdes (233). In conclusion, hybrid metagenome assembly could significantly enhance the efficiency of contig assembly, taxonomic binning, and genome construction compared with procedures using Illumina short-read data alone, indicating that nanopore long reads are highly useful in metagenomic applications. This technique could be used to create high-resolution references for future human metagenome studies.

18.
Dev Cell ; 57(7): 901-913.e4, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35413238

RESUMO

The switch from mitosis to meiosis ensures the successive formation of gametes. However, it remains unclear how meiotic initiation occurs within the context of chromatin. Recent studies have shown that zinc finger HIT-type containing 1 (Znhit1), a subunit of the SRCAP chromatin remodeling complex, plays essential roles in modulating the chromatin structure. Herein, we report that the germline-conditional deletion of Znhit1 in male mice specifically blocks meiotic initiation. We show that Znhit1 is required for meiotic prophase events, including synapsis, DNA double-strand break formation, and meiotic DNA replication. Mechanistically, Znhit1 controls the histone variant H2A.Z deposition, which facilitates the expression of meiotic genes, such as Meiosin, but not the expression of Stra8. Interestingly, Znhit1 deficiency disrupts the transcription bubbles of meiotic genes. Thus, our findings identify the essential role of Znhit1-dependent H2A.Z deposition in allowing activation of meiotic gene expression, thereby controlling the initiation of meiosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Células Germinativas , Meiose , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina , Expressão Gênica , Células Germinativas/metabolismo , Histonas/metabolismo , Masculino , Meiose/genética , Camundongos
19.
BMC Genomics ; 23(1): 238, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35346033

RESUMO

BACKGROUND: Ribosomal DNAs (rDNAs) are arranged in purely tandem repeats, preventing them from being reliably assembled onto chromosomes during generation of genome assembly. The uncertainty of rDNA genomic structure presents a significant barrier for studying their function and evolution. RESULTS: Here we generate ultra-long Oxford Nanopore Technologies (ONT) and short NGS reads to delineate the architecture and variation of the 5S rDNA cluster in the different strains of C. elegans and C. briggsae. We classify the individual rDNA's repeating units into 25 types based on the unique sequence variations in each unit of C. elegans (N2). We next perform assembly of the cluster by taking advantage of the long reads that carry these units, which led to an assembly of 5S rDNA cluster consisting of up to 167 consecutive 5S rDNA units in the N2 strain. The ordering and copy number of various rDNA units are consistent with the separation time between strains. Surprisingly, we observed a drastically reduced level of variation in the unit composition in the 5S rDNA cluster in the C. elegans CB4856 and C. briggsae AF16 strains than in the C. elegans N2 strain, suggesting that N2, a widely used reference strain, is likely to be defective in maintaining the 5S rDNA cluster stability compared with other wild isolates of C. elegans or C. briggsae. CONCLUSIONS: The results demonstrate that Nanopore DNA sequencing reads are capable of generating assembly of highly repetitive sequences, and rDNA units are highly dynamic both within and between population(s) of the same species in terms of sequence and copy number. The detailed structure and variation of the 5S rDNA units within the rDNA cluster pave the way for functional and evolutionary studies.


Assuntos
Caenorhabditis elegans , RNA Ribossômico 5S , Animais , Caenorhabditis elegans/genética , DNA Ribossômico/genética , Genômica , RNA Ribossômico 5S/genética , Sequências Repetitivas de Ácido Nucleico/genética
20.
Environ Toxicol ; 37(7): 1551-1562, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35238458

RESUMO

The aim of this study was to assess the protective effect and potential mechanism of melatonin against bisphenol A (BPA)-induced apoptosis and oxidative damage in FLK-BLV cells. The results showed that BPA reduced cell viability in a dose- and time-dependent manner, caused cell shrinkage and induced oxidative stress and apoptosis in FLK-BLV cells, which were effectively reversed by melatonin. In addition, BPA caused autophagy flux impairment, which was confirmed by the increased of LC3-II and p62 levels, whereas melatonin treatment effectively reduced p62 levels under BPA treatment, and reversed apoptosis-related protein expression patterns caused by BPA. However, inhibition of autophagy by CQ partially abolished the protective effect of melatonin on apoptosis, suggesting that melatonin against BPA-induced oxidative injury and apoptosis by activating autophagy pathway. Moreover, we found that melatonin inhibited BPA-induced the activation of p38 MAPK, which was comparable to SB203580 pretreatment, and companied by the activation of autophagy and decreases of apoptosis when compared to BPA alone, indicating that melatonin protected against BPA-induced apoptosis partially through the p38 MAPK-autophagy pathway. In conclusion, these results suggest that melatonin may prevent BPA-induced FLK-BLV cell damage by inhibiting p38/MAPK signaling pathway and activating autophagy, and it could be a potential therapeutic compound in preventing BPA-induced cell damage.


Assuntos
Vírus da Leucemia Bovina , Sistema de Sinalização das MAP Quinases , Melatonina , Animais , Apoptose , Autofagia , Compostos Benzidrílicos , Interações Medicamentosas , Vírus da Leucemia Bovina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melatonina/farmacologia , Melatonina/uso terapêutico , Estresse Oxidativo , Fenóis , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...